4736 Decision Mathematics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1 (i) \& $$
\left.\begin{array}{lllllllll}
\hline 43 & 172 & 536 & 17 & 314 & 462 & 220 & 231
\end{array}\right]
$$ \& $$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& First folder correct Second folder correct All correct (cao) \& [3]

\hline (ii) \& $$
\begin{array}{lllllll}
536 & 462 & 314 & 231 & 220 & 172 & 43 \\
17
\end{array}
$$ \& B1

M1

A1 \& | List sorted into decreasing order seen (cao) |
| :--- |
| [Follow through from a decreasing list with no more than 1 error or omission] |
| First folder correct |
| All correct | \& [3]

\hline (iii) \& $$
\begin{aligned}
& (5000 \div 500)^{2} \times 1.3 \\
& =130 \text { seconds }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | $10^{2} \times 1.3$ |
| :--- |
| or any equivalent calculation Correct answer, with units | \& [2]

\hline \multicolumn{5}{|r|}{Total $=8$}

\hline
\end{tabular}

2 (i)	The sum of the orders must be even, (but $1+2+3+3=9$ which is odd).	B1	There must be an even number of odd nodes.	[1]
(ii) a		M1 A1	A graph with five vertices that is neither connected nor simple Vertex orders 1, 1, 2, 2, 4	[2]
b	Because it is not connected	B1	You cannot get from one part of the graph to the other part.	[1]
c	eg	B1	A connected graph with vertex orders $1,1,2,2,4$ (Need not be simple)	[1]
(iii) a	There are five arcs joined to A. Either Ann has met (at least) three of the others or she has met two or fewer, in which case there are at least three that she has not met. In the first case at least three of the arcs joined to A are blue, in the second case at least three of the arcs joined to A are red.	M1 A1	A reasonable attempt (for example, identifying that there are five arcs joined to A) A convincing explanation (this could be a list of the possibilities or a well reasoned explanation)	[2]
b	If any two of Bob, Caz and Del have met one another then B, C and D form a blue triangle with A. Otherwise B, C and D form a red triangle.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	A reasonable or partial attempt (using A with B, C, D) A convincing explanation (explaining both cases fully)	[2]
Total $=9$				

3 (i)	$\begin{aligned} & y \geq x \\ & x+y \leq 8 \\ & x \geq 1 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Line $y=x$ in any form Line $x+y=8$ in any form Line $x=1$ in any form All inequalities correct [Ignore extra inequalities that do not affect the feasible region]	[4]
(ii)	(1, 1), (1, 7), (4, 4)	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Any two correct coordinates All three correct [Extra coordinates given $\Rightarrow \mathrm{M} 1, \mathrm{~A} 0$]	[2]
(iii)	$(1,7) \quad 23$ $(4,4) \quad 20$ At optimum, $x=1$ and $y=7$ Maximum value $=23$	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept (1, 7) identified 23 identified	[3]
(iv)	$\begin{aligned} & 2 \times 1+k \times 7 \geq 2 \times 4+k \times 4 \\ & \quad k \geq 2 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$2+7 k$ or implied, or using line of gradient $-\frac{2}{k}$ Greater than or equal to 2 (cao) $[k>2 \Rightarrow \mathrm{M} 1, \mathrm{~A} 0]$	[2]
Total $=11$				

4 (i)		$\begin{array}{l\|l} \hline 4 & 5 \\ \hline 6 & 5 \\ \hline D & \\ & \\ & \\ & \\ \hline \end{array}$ $-B-D$.5 miles			M1 M1 A1 B1 B1 B1 B1	Both 6 and 5 shown at D [5 may appear as perm label only] $14,13.5$ and 10.5 shown at G No extra temporary labels All temporary labels correct [condone perm values only appearing as perm labels] [Dep on both M marks] All permanent labels correct [may omit G, but if given it must be correct] Order of labelling correct [may omit G but if given it must be correct] cao cao	[7]
(ii)	Route Inspection problem				B1	Accept Chinese Postman	[1]
(iii)					B1 M1 A1 M1 A1	Identifying or using A, D, E, H Attempting at least one pairing At least one correct pairing or correct total Adding their 10 to 67.5 77.5 (cao)	5]
(iv)	Repeat arcs $E F$ and $F D$ $3.5+67.5=71$ miles				$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & \text { cao [NOT DE or } D-F-E] \\ & \text { cao } \end{aligned}$	[2]
(v)	$A-B-C-G-F-D$ then method stalls E and H are missed out				B1	Showing route as far as D and then explaining the problem	1]
(vi)	$\begin{aligned} & C-B-A-D-F-E-H-G-C \\ & 37.5 \text { miles } \end{aligned}$				$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { [If final } C \text { is missing } \Rightarrow \mathrm{M} 1, \mathrm{~A} 0] \\ & \text { [A diagram needs arrows for A1] } \\ & 37.5 \text { (cao) } \\ & \hline \end{aligned}$	[3]
(vii)	Nodes: B C D F E HG Weight $=16$ miles [Two shortest arcs from A are $A B$ and $A D$] $2+6+16$ Lower bound $=24$ miles				M1 A1 B1 B1 M1 A1	A spanning tree on reduced network (may show $A B, A D$) Correct minimum spanning tree marked, with no extra arcs cao cao 8 + their 16 (or implied) cao	[6]
Total $=25$							

